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Abstract. Laser scanning technology has enabled to study three-dimensional (3D) structures in
forests. For example, airborne laser scanning (ALS) point cloud has been applied to detect indi-
vidual trees and segment tree crowns. However, the accuracy of such approach remains a chal-
lenge because of the intersected crowns and complicated understories. We developed a metabolic
theory-based algorithm for individual tree detection and crown segmentation from ALS data.
The algorithm is composed of two parts, of which one is an unscaled transporting distance-based
top-to-bottom detection approach, and the other is a scaled transporting distance-based segmen-
tation approach. The unscaled transporting distance for detection is the absolute distance from
tree root to crown and then to ALS point based on the tree structure models, whereas the scaled
transporting distance for segmentation is the unscaled distance that is scaled by an initial tree
height obtained during detection. This is based on a basic metabolic theory that vascular plants
tend to minimize the material transporting distance from root to leaves. Hence, seven types of
materials transporting distance models were built based on monopodial branching structure or
crown-centered structure. The performance of the proposed approach was then further examined
and compared with two typical canopy height model-based approaches and one typical point
cloud-based approach, taking forest in Oxfordshire, UK, as a case study. The results showed that
our approach can reach a recall of 1.00, a precision of 0.96, and an F-score of 0.98 and can
reach to much higher accuracy for tree height (R2 ¼ 0.8045) than the comparison approaches
(R2 < 0.2) in the study plot. One of the main reasons that led to such low accuracy of comparison
approaches is much overestimation of understory height with a mean error that is 2.9 times
higher than that of our approach on average. Furthermore, ALS point-to-point level accuracy
assessment shows 9.7% more ALS points were truly assigned in our approach than that of com-
parison approaches. It is noticed that the algorithm presented is not sensitive to the two key
parameters: p (a percentage determining the threshold of unscaled transporting distances) rang-
ing from 32.0% to 34.0% and λ (the proportion between the assumed crown center height and
tree height) ranging from 0.70 to 0.90 based on our data set. Such high accuracy of our approach
can greatly improve detections of individual tree and crown segmentation, especially in delin-
eating understories in complex-structured forest. © 2021 Society of Photo-Optical Instrumentation
Engineers (SPIE) [DOI: 10.1117/1.JRS.15.034504]
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1 Introduction

In the last decade, airborne laser scanning (ALS), a state-of-the-art technology for remote sens-
ing, has rapidly become an effective tool for forest survey due to its higher performance in
obtaining three-dimensional (3D) structure parameters of trees in large areas.1,2 Mapping
terrain and trees using ALS data produces information such as estimation of tree size, leaf area
index, and biomass. This is especially useful in a survey of complex forest, where field inventory
could be time-consuming and with limited information.3,4

Tree stem position, height, and crown size can be derived once individual tree crowns (ITCs)
are segmented from ALS point cloud.5–8 Tree detection and segmentation algorithms are based
on either the two-dimensional (2D) canopy height model (CHM) or raw 3D ALS points.9,10

CHM can be used for delineating tree crowns by finding local maxima within a fixed or variable
window, but it loses part of understory information when converting from 3D points to a 2D
raster image.11–14 Approaches delineating ITCs directly from ALS point cloud, e.g., k-means
cluster approach,15 adaptive clustering approach,16 and regional growing approach,17,18 showed
great potential in delineating trees, but there is also obvious undersegmentation of understory
because ALS points from lower canopies may be incorrectly assigned to midstory or overstory.
Meanwhile, methods combining both laser scanning data and other remote sensing data for
delineating ITCs, e.g., multispectral19,20 and hyperspectral data,18,21,22 also greatly succeeded
in segmentation, but they need more kinds of source data.

ITCs segmentation approach inspired by ecological theories has been proposed in recent
years and is proved to be a practical way for delineating ITCs from laser scanning data.23–25 In
essence, assigning a laser scanning point to a tree is similar to assigning a piece of leaf to a tree.
The assignment could be made by a universal rule of a metabolic transporting theory that
vessel architecture plants tend to maximize the efficiency of transporting nutrition from root
to leaves, and one way to implement is to minimize the path distance, which is called trans-
porting distance.26–28 This type of assignment could greatly remove the potential influence by
overstories during the delineation of understories, as overstories have the relative longer trans-
porting distances. Moreover, there is a universal law that nutrition transporting efficiency is
directly proportional to the radius of stems or branches, thus, the relative transporting distance
is inversely proportional to the radius of stems or branches, more broadly, to the size of tree.
The transporting distances could be scaled by the size of tree, and the scaling factor was proved
to be close to two-third power of tree size (e.g., tree height).29–31 For segmenting individual
trees from terrestrial and mobile laser scanning data, Tao et al.25 developed a metabolic trans-
porting distance (MTD)-based shortest path algorithm. Metabolic scaling theory was also
applied to reduce the frequency of commission error in variable regional local maxima algo-
rithm segmenting trees from ALS point cloud,23 but it was based on CHM and had the potential
of missing understory.24,32 Therefore, the metabolic transporting theory shows huge potential
in directly delineating understories from point cloud, which is covered by overstories.
However, research in applying MTD to individual tree segmentation using ALS data is still
rare, which is due to the challenge of tracking nutrition transporting path from the relative
sparse ALS point cloud.

To fill this technical gap, we developed a new algorithm using MTD theory for individual tree
detection and crown segmentation based on ALS point cloud. To trace material transporting path,
we employed seven types of monopodial structure- and crown center-based models to calculate
transporting distance from root to points and took factors related to initial tree height or pre-
sumed crown center height as the scaling factor to scale the distance. To reduce common over-
estimation of understory size (see Secs. 3.3 and 4), we used the scaled distance to allocate ALS
points. The specific objectives are (1) to develop an unscaled transporting distance-based top-to-
bottom approach for detecting individual trees and (2) to develop a scaled transporting distance-
based approach for segmenting crowns. The unscaled distance was tracked based on the tree
structure models during detection due to the absence of tree height information, and scaled
distance was tracked during segmentation as the initial tree height was already obtained in detec-
tion. Moreover, three common-used typical CHM- and raw point cloud-based ITCs segmenta-
tion approaches were also implemented in parallel for comparison in the plot, and we evaluated
the results at both tree level and ALS point-to-point level. Results of three canopy layers show
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that, compared with comparison approaches, our approach is better in delineating tree, especially
for understories that are difficult to segment.

2 Materials and Methods

2.1 Study Area and Data Collection

The study area is a 1-ha plot in a deciduous forest located in WythamWoods (1°20′W, 51°47′N),
Oxfordshire, UK. The plot is dominated by Acer pseudoplatanus (Sycamore, 364 individuals,
69.6%), Fraxinus excelsior (Ash, 53 individuals, 10.1%), Corylus avellana (Hazel, 33 individ-
uals, 6.3%), Quercus robur (Oak, 23 individuals, 4.4%), Crataegus monogyna (Hawthorn, 17
individuals, 3.3%), and other species (33 individuals, 6.3%). The forest is part of the ForestGEO
global network forest inventory plots and is managed by the University of Oxford.33,34 In this
area, the mean annual temperature is 10°C with a mean annual rainfall of 726 mm.

Terrestrial laser scanning (TLS) data were collected with a RIEGL VZ-400 terrestrial laser
scanner at multiple scanning locations in leaf-off (December 2015 and January 2016)
condition.35 Reflective targets were placed during the scan to conjunct all investigated locations.
According to the manual segmentation for TLS, the tree point density was about 11;000 pts∕m2.
ALS data with a density of 6.0 pts∕m2 were collected with a Leica ALS-50 II scanner in leaf-on
(June 2014) condition in an 18-ha area containing the 1-ha plot.33,34 The filtering results
suggested that the tree point density was 5.4 pts∕m2.

The TLS detected 523 individual trees in the 1-ha plot, of which the average tree height is
15.42 m, the average crown width is 6.18 m. To assess the accuracy of detecting and segmenting
understories of our approach, we further subdivided the trees based on tree height into three
layers, which are understory (tree height under 10 m), midstory (between 10 and 20 m), and
overstory (above 20 m), as shown in Table 1. Performance assessment of the three layer’s detec-
tion and segmentation was carried out separately.

2.2 Data Preprocessing and Point Cloud Matching

523 individual trees and corresponding TLS points were manually extracted from the 1-ha TLS
data under careful visual inspection. The maximum TLS point number of individual tree was
5,780,668, the minimum was 2224, with an average value of 213,986. Note that the point num-
ber differences of individual trees were caused by the differences of tree size. For each individual
tree, we took the lowest TLS point as the tree root location, the highest TLS point as the treetop,
and the z-coordinate difference of top and bottom points as tree height [Fig. 1(a)]. Similarly,
we took east–west distance of the easternmost and westernmost points of an individual tree
as the east–west direction crown width and the north–south distance of the northernmost and
southernmost points as the north–south direction crown width [Fig. 1(b)]. The crown width of
a tree is the average of east–west and north–south direction crown widths.

We processed ALS point cloud as following. After we detected and removed the spurious
points, we classified all the points as ground points and tree points using an improved

Table 1 Information of three canopy layers of trees in the 1-ha plot. The statistics were based
on manually segmented TLS data, and the TLS data were used for validation of the algorithm.
Note that the trees with height shorter than 2.0 m were not counted.

Layer Tree height (m) Tree number Mean height (m) Mean crown width (m)

Overstory ≥20 178 22.66 8.70

Midstory 10 to 20 198 15.21 5.75

Understory ≤10 147 6.92 3.73

All trees 2.23 to 30.19 523 15.42 6.18
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progressive triangulated irregular network densification filtering algorithm36 in the LiDAR360
software.37 The parameters of the algorithm, iterative angle and iterative distance, were set as the
common value of 30 deg and 1.6 m, respectively. The maximum slope was set as 36 deg accord-
ing to the census data. Then, we extracted digital surface model (DSM) from tree points and
digital elevation model (DEM) from ground points.38,39 Then, CHM, which was used for com-
parison approaches, was produced by subtracting DEM from DSM.40–42 Next, the tree points
were normalized by subtracting the elevation value of corresponding DEM pixel from the
z-coordinate of point. Note that we implemented detection and segmentation algorithms on
normalized tree points. The above processes and implementation of the three comparison
approaches were processed in the LAStools43 and LiDAR360 software,37 and all the following
processes were analyzed using Python language.44

The 1-ha TLS and corresponding ALS data were accurately reprojected to the same projec-
tion coordinate system. It is commonly recognized that an ALS point and its spatial nearest TLS
point are most likely from the same individual tree, and we assigned each ALS point to the tree
with the spatial nearest TLS point. The truly assigned ALS point cloud was then obtained, which
is called true ALS, and it is used for point-to-point level assessment. Similar to TLS (Fig. 1), we
extracted height and crown width of 523 individual trees based on ALS point cloud (Fig. 2).

Trees that fell below the 1:1 line in Figs. 2(a) and 2(b) indicated the lack of understory ALS
points.45,46 58 trees were not assigned with any ALS point due to the relative sparse point density
[Fig. 2(c)] and fell at the bottom of the scatter diagrams in Figs. 2(a) and 2(b). The average height
and crown width of these trees from TLS data were 7.13 and 2.88 m, respectively, which

Fig. 2 Relationship between TLS- and true ALS-derived (a) tree height and (b) crown width.
Coefficients of determination (R2) are provided. The 58 dots that fell on the x -axis are the under-
stories, which were not assigned with any ALS point and were marked the height as 0 m, the crown
width as 0 m. (c) Spatial distribution of 58 understory trees that were not assigned with any ALS
point. Note that the true ALS is the truly assigned data.

Fig. 1 Schematic diagram of extracting (a) root location, and height and (b) crown width from TLS
point cloud after manual visual inspection.
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indicated they were understories, whereas the average values of all the 523 trees were 15.42 and
6.18 m, respectively.

Values of ALS-based tree height and crown width were expectedly underestimated compared
with TLS (Fig. 2), and this indicated that there is always underestimation no matter how well the
detection and segmentation approaches are. Therefore, we used tree height and crown width
derived from true ALS as the true values for a more accurate accuracy assessment, instead
of those from TLS.

2.3 Detection Approach

The proposed algorithm contains two main steps: first detecting individual trees and second
segmenting tree crowns. As tree heights were unknown during detection, we employed unscaled
transporting distance for tree detection; conversely, tree heights were known during segmenta-
tion, so we employed scaled transporting distance for crown segmentation. As shown in Fig. 3,
ALS point P1 was truly assigned to tree 2, according as the unscaled transporting distance of P1

along stem and branch for tree 1, a1 þ c1, is longer than that for tree 2, a2 þ c2. This allowed the
ALS points with relative low height would be much less likely to be falsely assigned to over-
stories, especially for the points belonging to understories. Also, this avoiding further overesti-
mation of understories tree height and overestimation of overstories crown width. This the reason
why the transporting distance-based algorithm performs well in detecting understories, and the
statistical analysis of understories is given in Sec. 3.3.

The unscaled transporting distance-based detection approach is based on the top-to-bottom
technique. Let Ui denote the set of current points to be assigned and i denote the number of
detected trees. The pseudocode of detection approach is as following (Algorithm 1).

The key point of the detection approach based on crown center-structured unscaled trans-
porting distance is to trace unscaled distance Dunscaled and unscaled distance threshold
Dunscaledðz; pÞ.

Fig. 3 Schematic diagram of MTD based on crown center structure. a1 and a2 are the distances
from ALS point P1 to crown center of trees 1 and 2, respectively. b1 and b2 are the distances from
ALS point P2 to crown center of trees 1 and 2, respectively. c1 and c2 are the distances along
stems. The ALS point is assigned to the tree with shortest transporting distance. Note that we used
a parameter λ, where λ = tree center height/tree height, to determine the crown center, and a pilot
test of a series of values of λ was conducted.
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Dunscaled was set as the distance from ALS point to crown center, and the crown center height
was set as λ times of tree height, where parameter λ was the proportion between the crown center
height and tree height.

According to the pseudocode of detection approach, there will be much fewer detected indi-
vidual trees, because the upper boundary will accommodate points that do not belong to the tree.
Therefore, we came up with the percentage line with a parameter p, a threshold line between the
lower and upper boundaries. This is to proportionally move the upper boundary to left. When
the proportion is p, the area between lower and upper boundaries was narrowed, thus “restricts”
the number of ALS points assigned to trees, and results in detections of more trees. Results
in Table 3 showed that only 63 trees were detected without the restriction of parameter p
(i.e., p ¼ 100.0%), whereas 529 trees were detected with parameter p ¼ 34.0%; however, the
real tree number in the plot is 523.

Dunscaledðz; pÞ is a distance threshold function, in which value at the height of z is the value of
the percentage line at that height, providing a reference for judgment whether an ALS point
belongs to an individual tree. More trees will be detected if the value of p is smaller; less trees
will be detected if the value of p is higher.

Dunscaledðz; pÞ is determined by training data that were explored in Fig. 4, in which the scatter
diagram of unscaled transporting distance and z-coordinate of true ALS points showed clear
boundaries (red dashed lines). Unscaled transporting distance is the distance between ALS point
and the tree crown center, and the crown center was determined by parameter λ, where λ = tree
center height/tree height. λ was tested with value from 0.1 to 0.9, and 0.8 was proved to be the
optimal value according to tree level assessment with recall, precision, and F-score. blowerðzÞ and
bupperðzÞ are the lower and upper boundary functions that outline the clear lower [left dashed line
in Fig. 4(b)] and upper boundaries (right dashed line) of all the points. The lower boundary can
be simplified as a piecewise function, fixed by points (0.9, 0.0), (0.7, 11.6), (0.8, 16.2), (2.8,
26.0), and (5.4, 30.0), and the upper boundary can be also simplified as a piecewise function,
fixed by points (17.6, 0.0), (12.8, 11.6), (17.6, 16.2), (12.6, 26.0), and (8.5, 30.0). We set that
Dunscaledðz; pÞ ¼ p × ½bupperðzÞ − blowerðzÞ� þ blowerðzÞ, where Dunscaledðz; pÞ (solid red line) is

Algorithm 1 The pseudocode of detection approach.

INITIALIZE total tree number i to 0

WHILE Ui is not empty

FOR each ALS point in Ui

IF the ALS point is the highest point in Ui

i ¼ i þ 1

SET the ALS point as the treetop of tree i # When the point’s xy -coordinates are the location of
tree i , z-coordinate is the height of tree i .

FOR each ALS point in Ui

IF Dunscaled is smaller than Dunscaledðz; pÞ # Dunscaled is the unscaled transporting distance of
the point regarding to tree i , and Dunscaledðz; pÞ is
an essential threshold varying according to the
parameter p and the z-coordinate of the point.

This point is assigned to tree i

This point is removed from Ui

ENDIF

ENDIF

ENDWHILE
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a threshold function setting to judge whether an ALS point belongs to an individual tree.
p, ranging from 0% to 100%, is a percentage threshold determining Dunscaledðz; pÞ.

For example, if p was set as 80.0%, then the threshold functionDunscaledðz; pÞ can be a piece-
wise function fixed by points (14.3, 0.0), (10.4, 11.6), (14.2, 16.2), (10.6, 26.0), and (7.9, 30.0).
p is a crucial parameter determining the number of detected trees, for example, detection
approach when percentage line parameter p ¼ 80.0% detected fewer individual trees than that
when p ¼ 50.0%.

By applying the unscaled transporting distance-based top-to-bottom approach, data were
obtained including the detected i trees, their heights, locations, and detection-based assigned
ALS points. To segment tree crowns, an initial assignment could be done during detection.
However, the assignment accuracy needs to be further improved and was done by applying the
approach below.

2.4 Segmentation Approach

The unscaled transporting distance-based algorithm has the potential of false assignment. As
shown in Fig. 3, ALS point P2 belonging to tree 1 would be falsely assigned to tree 2, according
as the unscaled transporting distance of P2 along stem and branch for tree 1, b1 þ c1, is longer
than that for tree 2, b2 þ c2. Thus, aiming at improving assignment accuracy, a scaled trans-
porting distance-based crown segmentation approach was developed to reassign ALS points.
This approach was designed according to an ecological theory that taller trees always have
thicker stems and branches, which greatly increase transporting efficiency.31,47 Note that the
segmentation approach has no ability to detect tree stems, so individual tree detection has to
be done before crown segmentation, which was processed based on tree locations and heights
extracted from detection, and the steps are below:

1. For an ALS point, calculate the scaled transporting distance from the ALS point to
all trees.

2. Reassign the point to the tree with the shortest scaled transporting distance.
3. Iterate through all ALS points as steps 1 and 2.

Fig. 4 Scatter diagrams of unscaled transporting distance and z-coordinate of points based on
true ALS. (a) An example tree with 846 ALS points, tree height is 28.76 m. (b) The overlay of ALS
points of all 523 trees shows clear boundaries (red dashed lines), the red solid line is a percentage
line determined by parameter p.

Xin et al.: Individual tree detection and crown segmentation based on metabolic theory. . .

Journal of Applied Remote Sensing 034504-7 Jul–Sep 2021 • Vol. 15(3)

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Applied-Remote-Sensing on 02 Dec 2021
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



“Reassigning” in segmentation is distinct from “assigning” in detection approach. Seven
transporting distance calculating methods were developed, namely DI, DII, DIII, DIV, DV,
DVI, and DVII (Fig. 5). The schematic diagrams of the seven methods are shown in Fig. 5.

DI is the unscaled distance along stem and branch based on monopodial structure.
DII is the scaled distance along branch based on monopodial structure, scaled by tree height.
Almost 87% of the species in this plot are with monopodial branching structure, which is

marked with a main stem. DII is under a crucial assumption that the intersection angle θ between
branch and the main stem increases from top to bottom, averagely ranging from 0 deg to
90 deg.48,49 Therefore, given the tree location and tree height, the point to a branch was able
to be located and the branch distance Dbranch and stem distance Dstem were calculated. The
unscaled distance DI is the contrast of scaled distance DII.

DIII is the scaled linear distance from tree root to ALS point, scaled by tree height.
DIV is the scaled distance along stem and branch based on crown center structure, scaled by

tree height.
DV is the scaled distance along branch based on crown center structure, scaled by tree height.
DVI is the scaled distance along branch based on crown center structure, scaled by an

assumed crown center height-related factor.
DVII is the scaled distance along branch based on crown center structure, scaled by a regres-

sive crown center height-related factor.
DIV,DV,DVI, andDVII are based on a strategy that the crown center is the distributing center

of materials, i.e., the materials are transported from root to crown center and then to branches and
leaves. The crown centers of DIV, DV, and DVI are determined by λ, which stands for the pro-
portion of crown center height to tree height. The crown center of DVII is determined by regres-
sion equation as shown in Fig. 6. We tested a series of values λ ranging from 0.1 to 0.9.

DV, DVI, and DVII employed branch distances but not stem distance. The scaling factors of
DVI andDVII were based on the ratio of branch distance to crown radius, amplified by the power
of n. For the ALS point inside of assumed or regressive crown radius, branch distance is smaller
than crown distance, so the scaling factor ðDbranchVI∕rcrownVIÞn and ðDbranchVII∕rcrownVIIÞn is
smaller than 1 (Table 2), thus scaled distance is shorter than unscaled distance. For the ALS
point outside of assumed or regressive crown radius, scaled distance is longer than unscaled
distance. Therefore, ALS points belonging to the crown of understory will less likely to be

Fig. 5 Schematic diagrams of seven transporting distances calculation methods. θ was the inter-
section angle between branch and stem, ranging from 0 deg to 90 deg.48,49DI andDII are based on
monopodial structure, whereas DIV, DV, DVI, and DVII are based on crown center structure.

Fig. 6 The regression equation of crown width and tree height established based on true ALS,
which were used for calculating the crown center height of DVII = tree height – the half of crown
width.
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falsely assigned to overstory or midstory compared with the comparison approaches, and this is
the reason why our approach has the stronger ability to segment understories.

All seven different distances were applied separately to the segmentation process in terms of
the tree locations and the initial tree height derived from detection.

2.5 Assessment Method

2.5.1 Tree level assessment

We assessed the detection and segmentation accuracy at tree level. If a real tree, extracted from
true ALS (also TLS), exists and is detected by our approach, it is called true positive (TP); if a
real tree exists but is not detected, it is called false negative (FN); if a real tree does not exist but a
false tree is detected, then it is false positive (FP). We employed a searching threshold to deter-
mine whether a real tree is detected. If there is at least one tree extracted from our approach
located within the area of radius searching threshold centered at the real tree, we judge the real
tree is detected, otherwise the real tree is not detected. The radius threshold was set at a common-
used value 3.0 m in this study. Also, recall (rec), precision (pre), and F-score (Fsc) were calcu-
lated as follows:50–52

EQ-TARGET;temp:intralink-;e001;116;172rec ¼ TP

TPþ FN
; (1)

EQ-TARGET;temp:intralink-;e002;116;118pre ¼ TP

TPþ FP
; (2)

EQ-TARGET;temp:intralink-;e003;116;88Fsc ¼ 2 × rec × pre

recþ pre
: (3)

Table 2 Seven kinds of distances we developed, named as DI, DII, DIII, DIV, DV, DVI, and DVII.

Distance Structure
Scaling
factora

Crown center
heightb Expressionc

DI Monopodial branching 1
(unscaled)

— DbranchI þ DstemI

DII Monopodial branching H−x — ðDbranchII þ DstemIIÞ × H−x

DIII — H−x — Droot × H−x

DIV Crown center structure H−x λ × H ðDbranchIV þ DstemIVÞ × H−x

DV Crown center structure H−x λ × H DbranchV × H−x

DVI Crown center structure ðDbranchVI∕
r crownVIÞn

λ × H DbranchVI × ðDbranchVI∕r crownVIÞn;
n ¼ 1;2; n

DVII Crown center structure ðDbranchVII∕
r crownVIIÞn

Regressive
(Fig. 6)

DbranchVII × ðDbranchVII∕r crownVIIÞn ,
n ¼ 1;2; : : :

a,bThe scaling factor and crown center height. The original unscaled distances were multiplied by the scaling
factor. “1” stands for unscaled. H−x stands for the tree height H to the power -x , where x was proved to be
2/3.30,31,47 DbranchVI and DbranchVII were branch distances. r crownVI and r crownVII were the crown radii, and the
crown center height and crown radius were determined by the parameter λ. For DVI, r crownVI ¼ ð1 − λÞ × H ,
where parameter λ was the proportion of crown center height to tree height. For DVII, r crownVII was obtained
from the regression equation of tree height and crown radius (Fig. 5). Parameter n was a power factor ranging
from 1 to 20.

cDbranchI, DbranchII, DbranchIV, DbranchV, DbranchVI, and DbranchVII are the transporting distances along branches,
DstemI, DstemII, and DstemIV are the transporting distances along stems. Droot is the linear distance between
tree root and ALS point, where the horizontal coordinate of the tree root is assumed as that of treetop, which
was already extracted during detection. Note that the branch distance is the linear distance between ALS point
and crown center, and the stem distance is the linear distance between tree root and crown center.
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It is recognized that higher TP, r, p, and F, with lower FN and FP indicate higher accuracy.53–55

We also assessed the accuracy in both vertical and horizontal dimensions. For vertical dimen-
sion, we calculated the coefficient of determination (R2) of tree height, and for horizontal dimen-
sion, we calculated R2 of crown width. TP, FN, FP, rec, pre, and Fsc are aimed at assessing
detection approach, whereas R2 of tree height and crown width are aimed at assessing both
detection and segmentation approaches.

Moreover, we assessed the performance of our approach and the comparison approaches
according to three canopy layers: overstory, midstory, and understory. We employed the mean
error of tree height (vertical) and crown width (horizontal) to measure the mean deviation of
derived value from true value based on true ALS. This is especially aimed at testing the ability
to delineate understories.

Table 3 Detection and segmentation accuracy assessment at tree and point-to-point levels. Top
results with the percentage line threshold p varied from 32.0% to 34.0% were shown. The scaled
transporting distance used for segmentation was DVI, which was proved to be the best among the
seven kinds of distances (Table 4). Note that TP value with 32.0%, 32.5%, and 33.5% are all 522,
but different detected trees were matched, thus, the R2 of height and crown width are different.
Detected tree number with the value p of 100.0% (i.e., without the restriction of percentage line)
was also listed.

p 32.0% 32.5% 33.0% 33.5% 34.0% 100.0%

Detection Tree level Detected tree
numbers

595 575 554 544 529 63

TP 522 522 523 522 520 —

FN 1 1 0 1 3 —

FP 73 53 31 22 9 —

rec 1.00 1.00 1.00 1.00 0.99 —

pre 0.88 0.91 0.94 0.96 0.98 —

Fsc 0.93 0.95 0.97 0.98 0.99 —

Height R2 0.7720 0.7854 0.7784 0.7304 0.7328 —

Crown width R2 0.2119 0.2203 0.2075 0.1945 0.2036 —

Heighta R2 0.8097 0.8210 0.7958 0.7951 0.7813 —

Crown widtha R2 0.1601 0.1774 0.1440 0.1414 0.1532 —

Point-to-
point level

Truly assigned points 12,291 12,667 12,194 11,907 11,999 —

Falsely assigned points 17,627 17,360 18,995 19,662 19,553 —

Unassigned points 24,305 24,196 23,034 22,654 22,671 —

Segmentation Tree level Height R2 0.7857 0.8045 0.7948 0.7543 0.7551 —

Crown width R2 0.4724 0.4743 0.4492 0.4259 0.4469 —

Heighta R2 0.8191 0.8339 0.8108 0.8094 0.7991 —

Crown widtha R2 0.4170 0.4144 0.3847 0.3759 0.3947 —

Point-to-
point level

Truly assigned points 18,591 19,212 18,964 18,773 19,127 —

Falsely assigned points 16,049 16,646 15,796 16,085 15,629 —

Unassigned points 19,583 18,365 19,463 19,365 19,467 —

aR2 excluding 58 real trees without true ALS point, these trees were not matched with true ALS point but were
manually segmented from TLS point cloud.
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2.5.2 Point-to-point level assessment

We assessed the detection- and segmentation-based assignment accuracy at point-to-point level,
as we have true ALS data, which were matched with TLS data. For a point, it could be truly
assigned, falsely assigned, or unassigned. More truly assigned points, less falsely assigned and
unassigned points indicate better assignment result. Detected tree numbers may be greater than
real tree numbers, thus some detected trees will not be matched to any real tree, and the points of
that detected trees will be unassigned points. Note that not all the points belonging to TP trees are
truly assigned points, because some points belonging to crown edges of TP tree could be
assigned to nearby trees.

To test the ability of our approach for detecting and segmenting understory, we also assessed
the accuracy of three canopy layers, overstory, midstory, and understory, separately at the tree
and point-to-point levels.

3 Results

3.1 Performance of Tree Detection and Crown Segmentation

3.1.1 Tree and point level assessment

We set a series of values of p ranging from 20.0% to 100.0% with an interval of 0.5% as the
transporting distance threshold for individual tree detection, and each real tree was matched with
the nearest detected tree within a search distance of 3 m. We assessed the accuracy of individual
tree detection and crown segmentation at tree level, as shown in Table 3.

When parameter p is 32.0%, 32.5%, and 33.5%, there are the same numbers of 522 TP trees
were detected, but corresponding R2 of tree height and crown width were different. Because
detected and segmented trees that were matched to the same tree were assigned with more
or less different ALS points, so were those different in tree height and crown width.

The result of tree level assessment (Table 3) showed that the greater the value of p, the
smaller the number of detected trees. The highest R2 of tree height and crown width were
reached when p equals 32.5%. The highest detection R2 of height and crown width was
0.8210 and 0.2203, respectively, whereas the highest segmentation R2 of height and crown width
was 0.8339 and 0.4743, respectively. Compared with detection results, R2 of tree height in seg-
mentation results did not improve significantly, but R2 of crown width was hugely improved.
The reason lies in that the scaled distance-based segmentation approach is more powerful for
delineating understories, as it was analyzed in Sec. 3.3 for the overstory, midstory, and
understory.

Fig. 7 Top view of (a) detection- and (b) segmentation-based assignment results based on
transporting distance DVI. Green, red, and blue points are truly assigned, falsely assigned, and
unassigned ALS points, respectively.
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3.1.2 Point-to-point level assessment

ALS points were assigned during detection and reassigned during segmentation, and more truly
assigned points indicated better assignment result. When p equals 32.5%, the most truly
assigned points of both detection and segmentation were achieved, as well as the highest R2

of tree height and crown width. Schematic diagrams of assignment result were shown in Fig. 7.
There are 51.67% more truly assigned ALS points of segmentation-based assignment

(19,212) than that of detection-based assignment (12,667). As for point-to-point level assign-
ment, the scaled transporting distance-based segmentation performs better than the unscaled
transporting distance-based detection. Thus, we reassigned points after detection. The detection

Table 4 Assessment of transporting distances. (a) Assessment of transporting distances DI, DII,
and DIII. θ is the intersection angle between branch and stem. (b) Assessment of transporting
distances DIV, DV, and DVI. For DVI, pilot tests were conducted where n ¼ 1;2; : : : ; 20; however,
only the best result when n ¼ 8 was listed. (c) Assessment of transporting distance DVII

(n ¼ 1;2; : : : ; 20). Only results when n is from 5 to 14 were listed.

(a)

Distance DI DII D III

θ (0, 90) (0, 90) —

Height R2 0.0010 0.6739 0.5620

Crown width R2 0.1013 0.6919 0.5470

Truly assigned points 15,338 34,110 29,635

(b)

λ 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

DIV Height R2 0.7520 0.7687 0.7863 0.8464 0.8834 0.9127 0.9137 0.9073 0.8967 0.8746

Crown width R2 0.5533 0.5633 0.5752 0.5658 0.5599 0.5304 0.4803 0.4333 0.3569 0.2585

Truly assigned
points

34,476 34,826 34,976 34,981 34,576 33,747 32,477 30,661 28,258 24,938

DV Height R2 0.7543 0.7579 0.7771 0.8098 0.8528 0.8946 0.9219 0.9294 0.9256 0.9210

Crown width R2 0.5627 0.5647 0.5757 0.5903 0.5908 0.5892 0.5794 0.5456 0.5103 0.4571

Truly assigned
points

33,557 34,060 34,574 34,922 35,181 35,076 34,471 33,617 31,922 29,567

DVI Height R2 0.7178 0.7435 0.7935 0.8151 0.8407 0.8934 0.9108 0.9256 0.9147 0.8832

Crown width R2 0.5480 0.5525 0.5792 0.5978 0.5980 0.6005 0.6193 0.6007 0.5432 0.4558

Truly assigned
points

32,812 33,524 34,184 34,823 35,184 35,218 34,695 33,106 26,804 11,699

(c)

n 5 6 7 8 9 10 11 12 13 14

Height R2 0.9296 0.9271 0.9283 0.9289 0.9271 0.9247 0.9253 0.9276 0.9297 0.9276

Crown width R2 0.5524 0.5621 0.5703 0.5813 0.5809 0.5818 0.5805 0.5803 0.5764 0.5747

Truly assigned points 33,882 33,871 33,795 33,630 33,338 32,889 32,308 31,660 31,053 30,407
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approach aims at searching for tree stems and deriving tree height, whereas the segmentation
approach aims at delineating crown edge.

3.2 Performance of True Tree Location-Based Segmentation

To evaluate the performance of segmentation approach based on the proposed seven kinds of
transporting distances, the influence of detection approach was removed by segmenting crowns
based on true tree locations, instead of detected tree locations. Accuracy assessment was done
using R2 of tree height and crown width and truly assigned points as shown in Table 4.

The validation data in Table 4, including true height and crown width used for calculating R2,
were derived from true ALS data, instead of TLS data. Tree and point-to-point level assessment
showed that DVII has the highest R2 of height 0.9289, DII has the highest R2 of crown width
0.6919, and DVI has the highest number of truly assigned points 35,218. However, the optimal
transporting distance strategy is DVI with n ¼ 8 and λ ¼ 0.80, which contributed to compre-
hensive results in height R2 of 0.9108, tree crown R2 of 0.6193, and truly assigned points
of 34,695. Moreover, DVI performed better than other distance strategies at both tree and
point-to-point levels. Therefore, the detection processing was based on the unscaled DVI

(i.e., the scaling factor equaled one), and segmentation processing was based on scaled DVI.
In Fig. 8, it can be seen that there is obvious overestimated height under the strategy ofDI and

obvious underestimated height under strategies of DII and DIII. The unscaled distance DI based
on a monopodial branching structure assigned more points to understory and added the derived
tree heights. On the contrast, the transporting distancesDIV,DVI, andDVII performed better, and
there was less over- or underestimation. It can be further confirmed from the top views of
assigned ALS point cloud in Fig. 9.

3.3 Performance of Our Approach and Comparison Approaches of Different
Canopy Layers

Three commonly used approaches for tree detection and crown segmentation were also applied
to the 1-ha plot as comparison approaches, including CHM-based (CHM), pit-free CHM-based
(PFCHM), and point cloud – layer stacking seed point-based (PCLSS) approaches.10,20,56,57

CHM and PFCHM are typical CHM-based method, whereas PCLSS is typical point cloud-based
method.

The CHM approach used a CHM-based watershed algorithm and CHM was generated from
raw point cloud,19,58,59 the PFCHM approach also used a watershed algorithm but based on the
pit-free CHM generated by removing pit from CHM,60 and PCLSS approach combined the

Fig. 8 Scatter diagrams of true tree height and true tree location-based segmentation height.
DIV was with λ ¼ 0.75, DV was with λ ¼ 0.80, and DVI was with λ ¼ 0.80, n ¼ 8.

Fig. 9 Top views of assigned ALS point cloud. Green points are correctly assigned, red points are
incorrectly assigned and the percentage were also listed.
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regional growth and spacing threshold3 with the layer stacking algorithm.61 As the performance
of the approaches shown in Fig. 10, all three comparison approaches overestimated tree heights,
the CHM and PFCHM approach missed most of the information of understories, whereas the
PCLSS approach falsely assigned large amount of ALS points to understories such as DI

(Fig. 8). The crown width R2 of all the three comparison approaches were <0.1, in contrast
to 0.4743 generated in the DVI-based approach in this study.

CHM and PFCHM approaches were CHM-based approaches and did not segment the raw
point cloud, thus we cannot assess the accuracy at point-to-point level. PCLSS approach seg-
mented the raw point cloud, and the point-to-point level result was shown in Fig. 11. Truly
assigned point numbers from PCLSS approach (17,516) were greater than those of detection
result (12,667, see Table 3 with p ¼ 32.5%) and were less than those of segmentation result
(19,212), and the derived height R2 (< ¼ 0.2) was less than detection result (0.8210) or seg-
mentation result (0.8339). This showed that at point-to-point level, the segmentation approach
developed in this study performed better than PCLSS approach, especially in targeting the
understories.

The tree height based on true ALS ranges from 2.23 to 30.19 m. We divided the trees into
three canopy layers: overstory (tree height ≥ 20 m), midstory (10 to 20 m), and understory
(≤10 m) (Table 1) and assessed the accuracy of our approach and three comparison approaches
for different canopy layers as shown in Fig. 12.

Fig. 10 Scatter diagrams of true ALS tree height and derived tree height of the three comparison
approaches: (a) CHM approach, (b) PFCHM approach, (c) PCLSS approach, and (d) the trans-
porting distance DVI-based approach. Only the best result of each approach was provided among
a series of parameters as follows. (a) Resolution of CHM was 0.3 m, Gaussian smoothing factor
was 1.7, Gaussian smoothing radius was seven pixels, and derived tree numbers were 679.
(b) Resolution of CHMwas 0.3 m, Gaussian smoothing factor was 1.3, Gaussian smoothing radius
was seven pixels, and derived tree numbers were 566. (c) Spacing threshold was 1.0 m, Gaussian
smoothing factor was 1.7, Gaussian smoothing radius was 15 pixels, and derived tree numbers
were 691. (d) Ratio λ of crown center height over tree height was 0.80, percentage line p was
32.5%, power n was 8, and derived tree numbers were 575. All the R2 of tree height of the three
comparison approaches are <0.2 due to the obvious overestimation of understory. The 58 dots
that fell on the y -axis are the understories, which were not assigned with any ALS point, and we
marked the height as 0 m. Similarly, the dots that fell on the x -axis are the trees that were not
assigned with any ALS point by the approach and were marked as 0 m height.
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The accuracy assessment of different canopy layers (Fig. 12) showed that our approach has
the better ability to segment individual trees, especially to extract tree heights compared with
other CHM- and point-based approaches. The mean error of tree height of all layers based on our
approach is 2.20 m, whereas that of comparison approaches ranges from 6.24 to 6.58 m. It is the
same for the mean value of crown width. For understory, our approach showed great potential to
correctly delineate trees. Our approach has the error of understory tree height of 4.19 m, whereas
the other comparison approaches have more than three times of errors, ranging from 14.82 to
15.21 m, which showed a great overestimation by assigning too many top-height points to the
understories. Our approach employed the transporting distance to reduce the overestimation by
removing high points from understories. For the crown width, our approach (DVI) is more
powerful to delineate the crown edge by enlarging the transporting distance of the point out
of assumed crown (Table 2, DVI).

Compared with the typical CHM-based approaches (CHM and PFCHM) and point cloud-
based approach (PCLSS), the MTD -based approach we developed performed well in delineat-
ing individual trees, especially for understories. According to the tree level assessment, R2 of tree
height and crown width, the newly developed approach performed better (0.8045 and 0.4743,
respectively) than the three comparison approaches (all <0.2 and 0.1, respectively). According to
the point-to-point level assessment, the general performance of newly developed segmentation
approach (19,212 truly assigned points) is superior to the point cloud-based approach, PCLSS
(17,516 truly assigned points).

4 Discussion

Almost all segmentation approaches employed at least one parameter to control the detected
results, and the parameter affected the results in varying degrees. For the compared CHM-based

Fig. 12 Histograms of mean errors of (a) tree height and (b) crown width obtained in our approach
(MTD) and three comparison approaches for overstory, midstory, and understory. The mean error
is the average absolute difference of derived value based on algorithms and true value based on
true ALS.

Fig. 11 Top view of point-to-point level assessment of PCLSS approach [Fig. 10(c)] in comparison
with the results generated in this study (Fig. 7). Green, red, and blue points are 17,516 (32.3%)
truly assigned, 13,534 (25.0%) falsely assigned, and 23,173 (42.7%) unassigned ALS points,
respectively.

Xin et al.: Individual tree detection and crown segmentation based on metabolic theory. . .

Journal of Applied Remote Sensing 034504-15 Jul–Sep 2021 • Vol. 15(3)

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Applied-Remote-Sensing on 02 Dec 2021
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



approaches we used, the performance is affected by the resolution of CHM, the Gaussian
smoothing factor and radius (see title of Fig. 10). For the compared point cloud-based approach
we used, the performance is affected by the spacing threshold, Gaussian smoothing factor, and
radius (Fig. 10). As with comparison approaches, our approach has two parameters, the ratio λ of
crown center height over tree height, which determines the crown center height, and percentage
line value p, which determines the threshold of unscaled distance during stem detection. For
transporting distance DVI, when parameter p varies from 32.0% to 34.0% (Table 3), parameter
λ varies from 0.70 to 0.90 [Table 4(b)], the R2 value of tree level assessment fluctuates within 0.1,
and no more than 2% of truly assigned points were reassigned. Therefore, from the sensitivity
analysis, the segmentation result based on distance DVI is not sensitive to parameters p varying
from 32.0% to 34.0% and λ varying from 0.70 to 0.90. In addition, according to the accuracy
assessment above, it is recommended to set parameter p and λ at 32.50% to 33.50% and 0.75 to
0.85, respectively.

The ability of detecting and extracting understories of this approach is shown in Fig. 13. In
Fig. 13(b), orange points were assigned to tree 8, with lots of blue points alternate. The alternate
blue points will be assigned to other trees that are with shorter transporting distance than tree 8.
However, CHM-based approaches will assign all the points (pixels) within this area to one
individual tree.

Ascendingly ordered distributions of derived tree height (Fig. 14) also demonstrated the
ability of our approach in delineating the understory. The three comparison approaches
(CHM, PFCHM, and PCLSS) obviously overestimated tree height, especially for the first
300 short trees, which were 5.6, 6.0, and 6.1 m on average, respectively. By contrast, the detec-
tion and segmentation height overestimated by 2.0 and 1.4 m, respectively. This suggested that
the MTD -based approach can greatly reduce the overestimation of understory.

However, the transporting distancesDI andDII are based on the monopodial structure, which
limits the implementation to the nonmonopodial structured forest. Also, the branching angles of
the monopodial structured trees differ from specific species. Moreover, we only implemented the
approach to deciduous forest, which is with medium complexity of canopy layers, and further
attempt in tropical forest or coniferous forest is needed, and corresponding sensitivity analysis
should also be carried out. But it can be estimated that it is more difficult in implementation on
tropical forests than on coniferous forests due to the complexity of the canopy layers of forests.
As for the influence of point density, it is predictable that a higher point density data could offer
more detailed structure of overstories, as well as of understories, thus, the approach could find
treetops and trace the paths more accurately, and vice versa. Also, the training data are necessary
for the determination of parameter p (Fig. 4), which will affect the individual tree detection and
will further affect the crown segmentation, thus, it is important in selecting training data in
further study.

Fig. 13 Diagram of the first 10 detected trees using unscaled transporting distance-based
top-to-bottom detection approach in the 1-ha plot, and the 10 trees are sequentially named with
tree 1, 2, . . . , 10. (a) Each color excluding blue stands for an individual tree. (b) A local enlarged
drawing of tree 8.
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5 Conclusions

We presented a new approach that applied an MTD theory to detect individual trees and segment
tree crowns from ALS point cloud. The foundation is that vascular plants tend to minimize the
material transporting distance from root to leaves. To trace the transporting path, we developed
monopodial branching structure-based distances (DI and DII) and crown center-based distances
(DIV, DV, DVI, and DVII). The experiments are based on ALS data acquired in a 1-ha deciduous
forest, and we assessed the accuracy at both tree level and point-to-point levels.

Mapping results from our approach are compared with two commonly used CHM- and one
point cloud-based approaches available from known software packages. Results showed that our
approach performed well in both detecting trees and segmenting crowns. Compared with the
three comparison approaches, our approach greatly reduced the errors in retrieving tree height
and crown width of understories and worked better in the understory of forest because of its
superiority in delineating small trees. Moreover, according to sensitive analysis, our approach
is less sensitive to the two key control parameters, λ and p. This showed that MTD theory was
successfully applied in individual tree detection and tree crown segmentation from ALS
point cloud.
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